Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1145/371225...
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interpretable Non-linear Survival Analysis with Evolutionary Symbolic Regression

Authors: Luigi Rovito; Marco Virgolin;

Interpretable Non-linear Survival Analysis with Evolutionary Symbolic Regression

Abstract

Survival Regression (SuR) is a key technique for modeling time to event in important applications such as clinical trials and semiconductor manufacturing. Currently, SuR algorithms belong to one of three classes: non-linear black-box -- allowing adaptability to many datasets but offering limited interpretability (e.g., tree ensembles); linear glass-box -- being easier to interpret but limited to modeling only linear interactions (e.g., Cox proportional hazards); and non-linear glass-box -- allowing adaptability and interpretability, but empirically found to have several limitations (e.g., explainable boosting machines, survival trees). In this work, we investigate whether Symbolic Regression (SR), i.e., the automated search of mathematical expressions from data, can lead to non-linear glass-box survival models that are interpretable and accurate. We propose an evolutionary, multi-objective, and multi-expression implementation of SR adapted to SuR. Our empirical results on five real-world datasets show that SR consistently outperforms traditional glass-box methods for SuR in terms of accuracy per number of dimensions in the model, while exhibiting comparable accuracy with black-box methods. Furthermore, we offer qualitative examples to assess the interpretability potential of SR models for SuR. Code at: https://github.com/lurovi/SurvivalMultiTree-pyNSGP.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Symbolic Regression, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE), Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green