
This paper proposes a deep learning framework where wavelet transforms (WT), 2-dimensional Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) stacked autoencoders (SAE) are combined towards single-step time series prediction. Within the framework, the input dataset is denoised using wavelet decomposition, before learning in an unsupervised manner using SAEs comprising bidirectional Convolutional LSTM (ConvLSTM) layers to predict a single-step ahead value. To evaluate our proposed framework, we compared its performance to two (2) state-of-the-art deep learning predictive models using three open-source univariate time series datasets. The experimental results support the value of the approach when applied to univariate time series prediction.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
