Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems

Authors: Yinan Shao; Jerry Chun-Wei Lin; Gautam Srivastava; Dongdong Guo; Hongchun Zhang; Hu Yi; Alireza Jolfaei;

Multi-Objective Neural Evolutionary Algorithm for Combinatorial Optimization Problems

Abstract

There has been a recent surge of success in optimizing deep reinforcement learning (DRL) models with neural evolutionary algorithms. This type of method is inspired by biological evolution and uses different genetic operations to evolve neural networks. Previous neural evolutionary algorithms mainly focused on single-objective optimization problems (SOPs). In this article, we present an end-to-end multi-objective neural evolutionary algorithm based on decomposition and dominance (MONEADD) for combinatorial optimization problems. The proposed MONEADD is an end-to-end algorithm that utilizes genetic operations and rewards signals to evolve neural networks for different combinatorial optimization problems without further engineering. To accelerate convergence, a set of nondominated neural networks is maintained based on the notion of dominance and decomposition in each generation. In inference time, the trained model can be directly utilized to solve similar problems efficiently, while the conventional heuristic methods need to learn from scratch for every given test problem. To further enhance the model performance in inference time, three multi-objective search strategies are introduced in this work. Our experimental results clearly show that the proposed MONEADD has a competitive and robust performance on a bi-objective of the classic travel salesman problem (TSP), as well as Knapsack problem up to 200 instances. We also empirically show that the designed MONEADD has good scalability when distributed on multiple graphics processing units (GPUs).

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!