Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Generation Compu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Generation Computing
Article
License: CC 0
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Generation Computing
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Defining Asymptotic Parallel Time Complexity of Data-dependent Algorithms

Authors: Fritzsche, Paula Cecilia; Rexachs del Rosario, Dolores Isabel; Luque, Emilio;

Defining Asymptotic Parallel Time Complexity of Data-dependent Algorithms

Abstract

The scientific research community has reached a stage of maturity where its strong need for high-performance computing has diffused into also everyday life of engineering and industry algorithms. In efforts to satisfy this need, parallel computers provide an efficient and economical way to solve large-scale and/or time-constrained problems. As a consequence, the end-users of these systems have a vested interest in defining the asymptotic time complexity of parallel algorithms to predict their performance on a particular parallel computer. The asymptotic parallel time complexity of data-dependent algorithms depends on the number of processors, data size, and other parameters. Discovering the main other parameters is a challenging problem and the clue in obtaining a good estimate of performance order. Great examples of these types of applications are sorting algorithms, searching algorithms and solvers of the traveling salesman problem (TSP). This article encompasses all the knowledge discovery aspects to the problem of defining the asymptotic parallel time complexity of datadependent algorithms. The knowledge discovery methodology begins by designing a considerable number of experiments and measuring their execution times. Then, an interactive and iterative process explores data in search of patterns and/or relationships detecting some parameters that affect performance. Knowing the key parameters which characterise time complexity, it becomes possible to hypothesise to restart the process and to produce a subsequent improved time complexity model. Finally, the methodology predicts the performance order for new data sets on a particular parallel computer by replacing a numerical identification. As a case of study, a global pruning traveling salesman problem implementation (GP-TSP) has been chosen to analyze the influence of indeterminism in performance prediction of data-dependent parallel algorithms, and also to show the usefulness of the defined knowledge discovery methodology. The subsequent hypotheses generated to define the asymptotic parallel time complexity of the TSP were corroborated one by one. The experimental results confirm the expected capability of the proposed methodology; the predictions of performance time order were rather good comparing with real execution time (in the order of 85%).

Related Organizations
Keywords

Parallel Computing, Complexity, Performance Order, Data-Dependent Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid