
In order to control a nonlinear system, a model needs to be established to predict its behavior. At present, there are many methods for nonlinear system modeling. Among them T-S fuzzy prediction model has attracted extensive attention due to its better generalization and excellent approximation in the dense region. Clustering algorithms can be used for the premise identification of the T-S model. But the optimal premise is not easy to be determined because of the difficulty to obtain optimal clustering number. For solving the shortcoming, a clustering validity function is described, based on which the clustering performance of adaptive fuzzy C-means clustering algorithm (adaptive FCM) is compared to that of the adaptive alternative fuzzy C-mean clustering algorithm (adaptive AFCM) with three datasets. Furthermore, two modeling algorithms for T-S fuzzy model using the adaptive FCM and the adaptive AFCM are designed, combining with the RLS, named adaptive FCM-RLS and adaptive AFCM-RLS. Finally, in order to demonstrate the effectiveness of the modeling methods in this paper, the T-S fuzzy model of a batch progress is constructed by adaptive FCM-RLS. With the T-S model, fuzzy generalized predictive controller is designed. Simulation results show that fuzzy-GPC controller has the better performances than GPC controller desisned with least square method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
