Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Takagi-Sugeno Fuzzy Modeling and Control of Nonlinear System with Adaptive Clustering Algorithms

Authors: Kai Zhao; Shurong Li; Zhongjian Kang;

Takagi-Sugeno Fuzzy Modeling and Control of Nonlinear System with Adaptive Clustering Algorithms

Abstract

In order to control a nonlinear system, a model needs to be established to predict its behavior. At present, there are many methods for nonlinear system modeling. Among them T-S fuzzy prediction model has attracted extensive attention due to its better generalization and excellent approximation in the dense region. Clustering algorithms can be used for the premise identification of the T-S model. But the optimal premise is not easy to be determined because of the difficulty to obtain optimal clustering number. For solving the shortcoming, a clustering validity function is described, based on which the clustering performance of adaptive fuzzy C-means clustering algorithm (adaptive FCM) is compared to that of the adaptive alternative fuzzy C-mean clustering algorithm (adaptive AFCM) with three datasets. Furthermore, two modeling algorithms for T-S fuzzy model using the adaptive FCM and the adaptive AFCM are designed, combining with the RLS, named adaptive FCM-RLS and adaptive AFCM-RLS. Finally, in order to demonstrate the effectiveness of the modeling methods in this paper, the T-S fuzzy model of a batch progress is constructed by adaptive FCM-RLS. With the T-S model, fuzzy generalized predictive controller is designed. Simulation results show that fuzzy-GPC controller has the better performances than GPC controller desisned with least square method.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!