Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/ds...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/km...
Other literature type . 2021
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Skyline Computation on Uncertain Dimensions

حساب خط الأفق بكفاءة على أبعاد غير مؤكدة
Authors: Nurul Husna Mohd Saad; Hamidah Ibrahim; Fatimah Sidi; Razali Yaakob; Ali A. Alwan;

Efficient Skyline Computation on Uncertain Dimensions

Abstract

La communauté des bases de données a observé au cours des deux dernières décennies la croissance de l'intérêt de la recherche pour les requêtes de préférences, chacune ayant ses techniques, ses avantages et ses inconvénients uniques. L'une d'entre elles est les requêtes skyline. Les requêtes Skyline visent à signaler aux utilisateurs des objets intéressants en fonction de leurs préférences. Pourtant, ils ne sont pas sans limites. Par conséquent, cet article se concentre sur l'extension efficace du traitement des requêtes de ligne d'horizon pour prendre en charge l'incertitude des dimensions, qui dans cet article est définie comme une dimension incertaine. Pour traiter les requêtes de ligne d'horizon sur des données de dimensions incertaines, nous proposons l'algorithme SkyQUD, où il fournit un mécanisme qui partitionnera l'ensemble de données en fonction des caractéristiques de chaque objet avant que les tests de dominance de ligne d'horizon ne soient effectués. Dans le processus d'élagage, nous utilisons une valeur de seuil de probabilité τ pour tenir compte de la grande taille de la ligne d'horizon signalée par SkyQUD en raison des probabilités calculées. L'algorithme a été validé par des expériences approfondies. Ses résultats montrent que les requêtes de ligne d'horizon peuvent être effectuées efficacement sur des dimensions incertaines, et l'algorithme proposé est efficace dans la réponse aux requêtes et capable de gérer de grands ensembles de données.

La comunidad de bases de datos ha observado en las últimas dos décadas el crecimiento del interés de la investigación en las consultas de preferencias, cada una de las cuales tiene sus técnicas, beneficios e inconvenientes únicos. Una de ellas son las consultas de skyline. Las consultas de horizonte tienen como objetivo informar a los usuarios de objetos interesantes en función de sus preferencias. Sin embargo, no están exentos de sus limitaciones. Por lo tanto, este documento se centra en extender de manera eficiente el procesamiento de consultas de horizonte para respaldar la incertidumbre en las dimensiones, que en este documento se define como dimensión incierta. Para procesar consultas de skyline sobre datos con dimensiones inciertas, proponemos el algoritmo SkyQUD, donde proporciona un mecanismo que particionará el conjunto de datos de acuerdo con las características de cada objeto antes de realizar las pruebas de dominancia de skyline. En el proceso de poda, utilizamos un valor umbral de probabilidad τ para acomodar el gran tamaño del horizonte informado por SkyQUD debido a las probabilidades calculadas. El algoritmo ha sido validado a través de extensos experimentos. Sus resultados muestran que las consultas de horizonte se pueden realizar de manera efectiva en dimensiones inciertas, y el algoritmo propuesto es eficiente en la respuesta de consultas y capaz de manejar grandes conjuntos de datos.

The database community has observed in the past two decades, the growth of research interest in preference queries, each of which has its unique techniques, benefits, and drawbacks. One of them is skyline queries. Skyline queries aim to report to users interesting objects based on their preferences. Yet, they are not without their limitations. Hence, this paper focuses on efficiently extending skyline query processing to support the uncertainty in dimensions, which in this paper is defined as uncertain dimension. To process skyline queries on data with uncertain dimensions, we propose SkyQUD algorithm, where it provides a mechanism that will partition the dataset according to the characteristics of each object before skyline dominance tests are performed. In the pruning process, we utilise a probability threshold value τ to accommodate the large skyline size reported by SkyQUD due to the computed probabilities. The algorithm has been validated through extensive experiments. Its results exhibit that skyline queries can be performed effectively on uncertain dimensions, and the proposed algorithm is efficient in query answering and capable of handling large datasets.

لاحظ مجتمع قواعد البيانات في العقدين الماضيين نمو الاهتمام البحثي بالاستعلامات التفضيلية، ولكل منها تقنياته وفوائده وعيوبه الفريدة. أحدها هو استعلامات SKYLINE. تهدف استعلامات سكاي لاين إلى إبلاغ المستخدمين بالكائنات المثيرة للاهتمام بناءً على تفضيلاتهم. ومع ذلك، فهي لا تخلو من قيودها. وبالتالي، تركز هذه الورقة على توسيع نطاق معالجة الاستعلام في الأفق بكفاءة لدعم عدم اليقين في الأبعاد، والذي يتم تعريفه في هذه الورقة على أنه بُعد غير مؤكد. لمعالجة استعلامات SKYLINE على البيانات ذات الأبعاد غير المؤكدة، نقترح خوارزمية SkyQUD، حيث توفر آلية ستقسم مجموعة البيانات وفقًا لخصائص كل كائن قبل إجراء اختبارات هيمنة SKYLINE. في عملية التقليم، نستخدم قيمة عتبة الاحتمال τ لاستيعاب حجم الأفق الكبير الذي أبلغت عنه SkyQUD بسبب الاحتمالات المحسوبة. تم التحقق من صحة الخوارزمية من خلال تجارب مكثفة. تُظهر نتائجها أنه يمكن إجراء استعلامات SKYLINE بشكل فعال على أبعاد غير مؤكدة، وأن الخوارزمية المقترحة فعالة في الإجابة على الاستعلام وقادرة على التعامل مع مجموعات البيانات الكبيرة.

Keywords

Artificial intelligence, Computer Networks and Communications, Continuous uncertainty model, Trajectory Data Mining and Analysis, Geography, Planning and Development, Distributed Constraint Optimization Problems and Algorithms, Skyline Operator, Social Sciences, uncertain data, uncertain dimensions, Theoretical computer science, FOS: Mathematics, Data mining, Biology, Spatial Reasoning, Uncertain data, Skyline, Pure mathematics, Partition (number theory), Computer science, preference evaluation, Agronomy, TK1-9971, Pruning, Process (computing), Top-k Query Processing, Algorithm, Operating system, Dimension (graph theory), Combinatorics, skyline query, Signal Processing, Computer Science, Physical Sciences, Computation, Object (grammar), Electrical engineering. Electronics. Nuclear engineering, Volunteered Geographic Information and Geospatial Crowdsourcing, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold