Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doaj.org/art...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/1c999...
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.18720/mc...
Other literature type . 2020
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long span bridges buffeting response to wind turbulence

Реакция большепролетных мостов на турбулентный ветровой поток
Authors: Guzeev, Roman; Domaingo, Andreas;

Long span bridges buffeting response to wind turbulence

Abstract

Изучен отклик вантовых мостов на воздействие пульсационной ветровой нагрузки. Обобщены несколько моделей ветрового потока и предложены модели для практического применения. Модель ветрового потока включает в себя профили средней скорости и интенсивности турбулентности, энергетические спектры и функции пространственной когерентности. Динамический отклик конструкции определяется теорией случайных колебаний для стационарного случайного процесса. Предложен упрощенный метод расчета, используя разложение по собственным формам колебаний с учетом только основных форм. Аэродинамическое демпфирование вычисляется с использованием производных флаттера. Разработан метод учета пространственной когерентности ветровой нагрузки для вантовой системы. Предложена процедура вычисления обобщенной спектральной плотности пульсационной ветровой нагрузки для различных конструктивных элементов, которая учитывает влияние трех компонент пульсаций скорости ветра. Проанализирован вклад различных компонент пульсаций скорости ветра и их корреляция в полный динамический отклик различных элементов конструкции.

The buffeting response of the cable-supported bridges is studied. Several wind turbulence models are summarized and wind field models for practical application in bridge and structural engineering is proposed. The wind turbulence model comprises the mean wind and turbulence intensity profile, power spectral density and coherence functions. The dynamic response of the structure is governed by random vibration theory of stationary random process. The simplified method of analysis using the mode decomposition method is proposed where the only main modes are considered and the aerodynamic damping is introduced by means of flutter derivatives. The method of cable system coherence analysis is presented. The calculation procedure of generalized power spectral densities of wind turbulence load for different structural component is proposed. This procedure takes into account the effects of all three orthogonal components of wind turbulence. The contribution of the wind velocity components into total dynamic response and their correlation for different structural elements is studied.

Keywords

numerical models, Building construction, когерентность, random vibration, динамический отклик, пролетное строение моста, проектирование конструкций, численные модели., Engineering (General). Civil engineering (General), cable stayed and suspension bridges, turbulence model, coherence, structural design, модели турбулентности, numerical models., buffeting response, случайные колебания, TA1-2040, вантовые и висячие мосты, bridge deck, TH1-9745

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average