Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Intelligent Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intelligent train operation based on deep learning from excellent driver manipulation patterns

Authors: Kai Xu; Yongchao Tu; Wenxuan Xu; Shixun Wu;

Intelligent train operation based on deep learning from excellent driver manipulation patterns

Abstract

Abstract In the application of deep learning to realize intelligent train operation, there are some problems, such as the single learning task. Especially when using the gradient descent approach to optimize the structure, weight and threshold of a deep network, it is easy in this task to fall into a local optimum. This leads to excessive reliance on manual tuning experience. Aiming at the above issues, this paper proposes a new approach of train manipulation and prediction based on a long short‐term memory (LSTM) deep network. From the perspective of automatic hyper‐parameter optimization, the gradient‐free intelligent search method is principally chosen to optimize the architecture and parameters of a LSTM deep network, so as to improve the manipulation accuracy based on learning from excellent drivers. This method first selects excellent driver data through the Pareto dominance principle and crowding distance calculation; on this basis, a step‐by‐step method is used to optimize the structure, weight and threshold of the LSTM network. Particularly, in the first step, we adopt a genetic algorithm to search for the optimal deep network structure, which overcomes the problem that the structure is difficult to determine. In the second step, we optimize the parameters of the deep network, a process that is divided into two stages of ‘rough learning’ and ‘precise learning’. In the ‘rough learning’ stage, we use the multi‐population chained multi‐agent (MPCMA) algorithm to preliminarily optimize the LSTM network parameters. In the ‘precise learning’ stage, the Adam algorithm is applied to further finely optimize the network parameters. Finally, through simulation experiments, it is verified that the proposed method improves the accuracy of train manipulation and prediction, and shows strong robustness in situations of multiple manipulation sequences and different temporary speed limits.

Related Organizations
Keywords

TA1001-1280, Combinatorial mathematics, Neural nets, Optimisation techniques, Interpolation and function approximation (numerical analysis), QA75.5-76.95, Rail‐traffic system control, Transportation engineering, Electronic computers. Computer science, Linear algebra (numerical analysis)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold