
AbstractThis paper presents a bi-indicator-based surrogate-assisted evolutionary algorithm (BISAEA) for multi-objective optimization problems (MOPs) with computationally expensive objectives. In BISAEA, a Pareto-based bi-indictor strategy is proposed based on convergence and diversity indicators, where a nondominated sorting approach is adopted to carry out two-objective optimization (convergence and diversity indicators) problems. The radius-based function (RBF) models are used to approximate the objective values. In addition, the proposed algorithm adopts a one-by-one selection strategy to obtain promising samples from new samples for evaluating the true objectives by their angles and Pareto dominance relationship with real non-dominated solutions to improve the diversity. After the comparison with four state-of-the-art surrogate-assisted evolutionary algorithms and three evolutionary algorithms on 76 widely used benchmark problems, BISAEA shows high efficiency and a good balance between convergence and diversity. Finally, BISAEA is applied to the multidisciplinary optimization of blend-wing-body underwater gliders with 30 decision variables and three objectives, and the results demonstrate that BISAEA has superior performance on computationally expensive engineering problems.
One-by-one selection, Radial basis function, Electronic computers. Computer science, QA75.5-76.95, Information technology, Pareto-based bi-indicator, Expensive multi-objective optimization, T58.5-58.64
One-by-one selection, Radial basis function, Electronic computers. Computer science, QA75.5-76.95, Information technology, Pareto-based bi-indicator, Expensive multi-objective optimization, T58.5-58.64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
