Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Complex & Intelligen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bi-indicator driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems

Authors: Wenxin Wang; Huachao Dong; Peng Wang; Jiangtao Shen;

Bi-indicator driven surrogate-assisted multi-objective evolutionary algorithms for computationally expensive problems

Abstract

AbstractThis paper presents a bi-indicator-based surrogate-assisted evolutionary algorithm (BISAEA) for multi-objective optimization problems (MOPs) with computationally expensive objectives. In BISAEA, a Pareto-based bi-indictor strategy is proposed based on convergence and diversity indicators, where a nondominated sorting approach is adopted to carry out two-objective optimization (convergence and diversity indicators) problems. The radius-based function (RBF) models are used to approximate the objective values. In addition, the proposed algorithm adopts a one-by-one selection strategy to obtain promising samples from new samples for evaluating the true objectives by their angles and Pareto dominance relationship with real non-dominated solutions to improve the diversity. After the comparison with four state-of-the-art surrogate-assisted evolutionary algorithms and three evolutionary algorithms on 76 widely used benchmark problems, BISAEA shows high efficiency and a good balance between convergence and diversity. Finally, BISAEA is applied to the multidisciplinary optimization of blend-wing-body underwater gliders with 30 decision variables and three objectives, and the results demonstrate that BISAEA has superior performance on computationally expensive engineering problems.

Related Organizations
Keywords

One-by-one selection, Radial basis function, Electronic computers. Computer science, QA75.5-76.95, Information technology, Pareto-based bi-indicator, Expensive multi-objective optimization, T58.5-58.64

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold