
doi: 10.1049/itr2.12489
Abstract Autonomous vehicles navigating urban roads require technology that combines low latency with high computing power. The limited resources of the vehicle itself compel it to offload task requirements to edge server (ES) for processing assistance. However, as the number of vehicles continues to increase, how edge servers reasonably allocate limited resources to autonomous vehicles becomes critical to the success of urban intelligent transportation services. This paper establishes an urban road scenario with multiple autonomous vehicles and an edge computing server and considers two main driving behaviour transition resource requests, namely car‐following behaviour requests and lane‐changing behaviour requests. Simultaneously, acknowledging that vehicles may encounter unforeseen traffic hazards when switching driving behaviours, a safety redundancy setting strategy is employed to allocate additional resources to the vehicle to ensure safety and model the vehicle resource allocation problem in the autonomous driving system. Double‐deep Q‐network (DDQN) is then used to solve this model and maximize the total system utility by comprehensively considering resource costs, system revenue, and autonomous vehicle safety. Finally, results from the simulation experiment indicate that the proposed dynamic resource allocation scheme, based on deep reinforcement learning for autonomous vehicles under edge computing, not only greatly improves the system's benefits and reduces processing delays compared to traditional greedy algorithms and value iteration, but also effectively ensures security.
Transportation engineering, TA1001-1280, automated driving and intelligent vehicles, Electronic computers. Computer science, emergency management, QA75.5-76.95
Transportation engineering, TA1001-1280, automated driving and intelligent vehicles, Electronic computers. Computer science, emergency management, QA75.5-76.95
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
