
doi: 10.35808/ersj/3497
DESIGN/METHODOLOGY/APPROACH: The GraphRAG framework processes source documents by dividing them into smaller fragments (chunks) to facilitate knowledge extraction. Using community detection algorithms, such as the Leiden algorithm, GraphRAG identifies semantic clusters within the knowledge graph, enabling both local and global information retrieval. The tool employs a multi-stage analysis approach, leveraging prompts to detect entities and relationships in the text, which are then organized into structured graph nodes and edges.
FINDINGS: The experimental results reveal that smaller chunk sizes (e.g., 300 tokens) significantly improve the granularity of detected entities and relationships, leading to a more detailed knowledge graph structure. This approach enhances response accuracy for knowledge-intensive queries by enabling the LLM to focus on specific text segments, improving the precision of extracted information.
ORIGINALITY/VALUE: This research contributes to the field by demonstrating an effective integration of LLMs with knowledge graphs to process large text corpora. GraphRAG’s method of combining local and global retrieval through knowledge graphs represents an advancement over traditional retrieval-augmented generation methods, especially in scenarios requiring detailed information synthesis.
PRACTICAL IMPLICATIONS: GraphRAG has practical applications in any domain where accurate and context-rich responses are essential, such as customer support, decisionmaking, and research analysis. By balancing chunk size and processing efficiency, the tool enables scalable analysis while maintaining high data quality, making it a valuable asset for knowledge-intensive tasks.
PURPOSE: This paper presents GraphRAG, a novel tool that integrates large language models (LLMs) with knowledge graphs to enhance the precision and consistency of responses generated from unstructured text data. The primary objective is to improve the quality of information retrieval and synthesis for complex user queries requiring comprehensive understanding.
peer-reviewed
Project management -- Data processing, Natural language processing (Computer science), Semantic computing, Knowledge representation (Information theory)
Project management -- Data processing, Natural language processing (Computer science), Semantic computing, Knowledge representation (Information theory)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
