
arXiv: 2407.00031
Several open-source systems, such as Flower and NVIDIA FLARE, have been developed in recent years while focusing on different aspects of federated learning (FL). Flower is dedicated to implementing a cohesive approach to FL, analytics, and evaluation. Over time, Flower has cultivated extensive strategies and algorithms tailored for FL application development, fostering a vibrant FL community in research and industry. Conversely, FLARE has prioritized the creation of an enterprise-ready, resilient runtime environment explicitly designed for FL applications in production environments. In this paper, we describe our initial integration of both frameworks and show how they can work together to supercharge the FL ecosystem as a whole. Through the seamless integration of Flower and FLARE, applications crafted within the Flower framework can effortlessly operate within the FLARE runtime environment without necessitating any modifications. This initial integration streamlines the process, eliminating complexities and ensuring smooth interoperability between the two platforms, thus enhancing the overall efficiency and accessibility of FL applications.
Added a figure comparing running a Flower application natively or within FLARE
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
