
In this paper we present a local interpolation-based variant of the well-known polar format algorithm used for synthetic aperture radar (SAR) image formation. We develop the algorithm to match the capabilities of the application-specific logic-in-memory processing paradigm, which off-loads lightweight computation directly into the SRAM and DRAM. Our proposed algorithm performs filtering, an image perspective transformation, and a local 2D interpolation, and supports partial and low-resolution reconstruction. We implement our customized SAR grid interpolation logic-in-memory hardware in advanced 14 nm silicon technology. Our high-level design tools allow to instantiate various optimized design choices to fit image processing and hardware needs of application designers. Our simulation results show that the logic-in-memory approach has the potential to enable substantial improvements in energy efficiency without sacrificing image quality.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
