Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exposures to select risk factors can be estimated from a continuous stream of inertial sensor measurements during a variety of lifting-lowering tasks

Authors: Sol Lim;

Exposures to select risk factors can be estimated from a continuous stream of inertial sensor measurements during a variety of lifting-lowering tasks

Abstract

Wearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0-22.7 kg) at varied workstation heights and handling modes. We implemented a Hierarchical model, that sequentially classified risk factors, including workstation height, handling mode, and relative hand load. Our algorithm detected lifting-lowering phases (>97.8%) with mean onset errors of 0.12 and 0.2 seconds for lifting and lowering phases. It estimated workstation height (>98.5%), handling mode (>87.1%), and relative hand load (mean absolute errors of 5.6-5.8%) across conditions, highlighting the benefits of data-driven models in deriving lifting-lowering occurrences, timing, and critical risk factors from continuous IMU-based kinematics.

Related Organizations
Keywords

Male, Adult, Lifting, Hand, Biomechanical Phenomena, Occupational Diseases, Weight-Bearing, Wearable Electronic Devices, Young Adult, Risk Factors, Task Performance and Analysis, Accelerometry, Humans, lifting-lowering, Female, biomechanical exposures, data-driven algorithms, Musculoskeletal Diseases, Inertial sensor measurements, risk factors estimation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!