
Wearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0-22.7 kg) at varied workstation heights and handling modes. We implemented a Hierarchical model, that sequentially classified risk factors, including workstation height, handling mode, and relative hand load. Our algorithm detected lifting-lowering phases (>97.8%) with mean onset errors of 0.12 and 0.2 seconds for lifting and lowering phases. It estimated workstation height (>98.5%), handling mode (>87.1%), and relative hand load (mean absolute errors of 5.6-5.8%) across conditions, highlighting the benefits of data-driven models in deriving lifting-lowering occurrences, timing, and critical risk factors from continuous IMU-based kinematics.
Male, Adult, Lifting, Hand, Biomechanical Phenomena, Occupational Diseases, Weight-Bearing, Wearable Electronic Devices, Young Adult, Risk Factors, Task Performance and Analysis, Accelerometry, Humans, lifting-lowering, Female, biomechanical exposures, data-driven algorithms, Musculoskeletal Diseases, Inertial sensor measurements, risk factors estimation
Male, Adult, Lifting, Hand, Biomechanical Phenomena, Occupational Diseases, Weight-Bearing, Wearable Electronic Devices, Young Adult, Risk Factors, Task Performance and Analysis, Accelerometry, Humans, lifting-lowering, Female, biomechanical exposures, data-driven algorithms, Musculoskeletal Diseases, Inertial sensor measurements, risk factors estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
