Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multimodal mismatch responses in associative but not primary visual cortex support hierarchical predictive coding in cortical networks

Authors: Alice B Van Derveer; Jordan M. Ross; Jordan P. Hamm;

Multimodal mismatch responses in associative but not primary visual cortex support hierarchical predictive coding in cortical networks

Abstract

AbstractA key function of the mammalian neocortex is to process sensory data in the context of current and past stimuli. Primary sensory cortices, such as V1, respond weakly to stimuli that typical in their context but strongly to novel stimuli, an effect known as “deviance detection”. How deviance detection occurs in associative cortical regions that are downstream of V1 is not well-understood. Here we investigated parietal associative area (PTLp) responses to auditory, visual, and audio-visual mismatches with two-photon calcium imaging and local field potential recordings. We employed basic unisensory auditory and visual oddball paradigms as well as a novel multisensory oddball paradigm, involving typical parings (VaAc or VbAd) presented at p=.88 with rare “deviant” pairings (e.g. VaAd or VbAc) presented at p=.12. We found that PTLp displayed robust deviance detection responses to auditory-visual mismatches, both in individual neurons and in population theta and gamma-band oscillations. In contrast, V1 neurons displayed deviance detection only to visual deviants in a unisensory context, but not to auditory or auditory-visual mismatches. Taken together, these results accord with a predictive processing framework for cortical responses, wherein modality specific prediction errors (i.e. deviance detection responses) are computed in functionally specified cortical areas and feed-forward to update higher brain regions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!