Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/3q...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/39...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Framework for Efficient Medical Image Encryption Using Dynamic S-Boxes and Chaotic Maps

إطار لتشفير الصور الطبية بكفاءة باستخدام صناديق S الديناميكية والخرائط الفوضوية
Authors: Saleh Ibrahim; Hesham Alhumyani; Mehedi Masud; Sultan S. Alshamrani; Omar Cheikhrouhou; Ghulam Muhammad; M. Shamim Hossain; +1 Authors

Framework for Efficient Medical Image Encryption Using Dynamic S-Boxes and Chaotic Maps

Abstract

La protection de la vie privée des patients et des dossiers médicaux est une exigence légale. Les méthodes de cryptage traditionnelles ne parviennent pas à gérer le grand volume de données d'images médicales et leurs propriétés statistiques particulières. Dans cet article, nous proposons un cadre générique de chiffrement des images médicales basé sur un nouvel arrangement de deux constructions très efficaces, les boîtes de substitution dynamiques (S-box) et les cartes chaotiques. Il est démontré que la disposition de la substitution de la boîte S avant et après la substitution chaotique résiste avec succès aux attaques de texte en clair et de texte chiffré choisis. Des précautions particulières sont prises pour repousser l'attaque de réinitialisation contre les générateurs de nombres pseudo-aléatoires. Nous montrons comment mettre en œuvre le cadre générique en utilisant n'importe quelle méthode de construction de S-box dynamique dépendante de la clé et n'importe quelle carte chaotique. Les résultats expérimentaux montrent que le cadre proposé passe avec succès tous les tests de sécurité, quelle que soit la carte chaotique utilisée pour la mise en œuvre. Sur la base de l'analyse de la vitesse, nous recommandons l'utilisation de la carte Baker classique ou de la carte Henon pour atteindre un débit de cryptage approchant les 90 Mo/s sur un PC moderne sans accélération matérielle.

Proteger la privacidad del paciente y los registros médicos es un requisito legal. Los métodos de cifrado tradicionales no logran manejar el gran volumen de datos de imágenes médicas y sus peculiares propiedades estadísticas. En este artículo, proponemos un marco genérico de cifrado de imágenes médicas basado en una disposición novedosa de dos construcciones muy eficientes, cajas de sustitución dinámica (cajas S) y mapas caóticos. Se demuestra que la disposición de la sustitución de la caja S antes y después de la sustitución caótica resiste con éxito los ataques de texto plano elegido y de texto cifrado elegido. Se toman precauciones especiales para defenderse del ataque de reinicio contra los generadores de números pseudoaleatorios. Mostramos cómo implementar el marco genérico utilizando cualquier método de construcción de caja S dinámico dependiente de la clave y cualquier mapa caótico. Los resultados experimentales muestran que el marco propuesto supera con éxito todas las pruebas de seguridad, independientemente del mapa caótico utilizado para la implementación. Basándonos en el análisis de velocidad, recomendamos el uso del mapa clásico de Baker o el mapa de Henon para lograr un rendimiento de cifrado cercano a 90 MB/s en un PC moderno sin aceleración de hardware.

Protecting patient privacy and medical records is a legal requirement. Traditional encryption methods fall short of handling the large volume of medical image data and their peculiar statistical properties. In this paper, we propose a generic medical image encryption framework based on a novel arrangement of two very efficient constructs, dynamic substitution boxes (S-boxes) and chaotic maps. The arrangement of S-box substitution before and after chaotic substitution is shown to successfully resist chosen plaintext and chosen ciphertext attacks. Special precautions are taken to fend off the reset attack against pseudorandom number generators. We show how to implement the generic framework using any key-dependent dynamic S-box construction method and any chaotic map. Experimental results show that the proposed framework successfully passes all security tests regardless of the chaotic map used for implementation. Based on speed analysis, we recommend the use of the classical Baker map or Henon map to achieve encryption throughput approaching 90 MB/s on a modern PC without hardware acceleration.

تعد حماية خصوصية المريض والسجلات الطبية مطلبًا قانونيًا. تقصر طرق التشفير التقليدية عن التعامل مع الحجم الكبير من بيانات الصور الطبية وخصائصها الإحصائية الغريبة. في هذه الورقة، نقترح إطارًا عامًا لتشفير الصور الطبية بناءً على ترتيب جديد لبنايتين فعالتين للغاية، وصناديق الاستبدال الديناميكية (صناديق S) والخرائط الفوضوية. يظهر ترتيب استبدال S - box قبل الاستبدال الفوضوي وبعده أنه يقاوم بنجاح هجمات النص العادي والنص المشفر المختارة. يتم اتخاذ احتياطات خاصة لدرء هجوم إعادة الضبط ضد مولدات الأرقام العشوائية الزائفة. نوضح كيفية تنفيذ الإطار العام باستخدام أي طريقة بناء S - box ديناميكية تعتمد على المفتاح وأي خريطة فوضوية. تظهر النتائج التجريبية أن الإطار المقترح اجتاز بنجاح جميع الاختبارات الأمنية بغض النظر عن الخريطة الفوضوية المستخدمة للتنفيذ. استنادًا إلى تحليل السرعة، نوصي باستخدام خريطة Baker الكلاسيكية أو خريطة Henon لتحقيق إنتاجية تشفير تقترب من 90 ميجابايت/ثانية على جهاز كمبيوتر حديث دون تسريع الأجهزة.

Keywords

FOS: Computer and information sciences, Image Encryption, Artificial intelligence, Chaotic Maps, Chaotic, Hénon map, Ciphertext, Encryption, Cryptanalysis of Block Ciphers and Hash Functions, Theoretical computer science, Artificial Intelligence, Computer security, Image (mathematics), Key (lock), Chaos-based Image Encryption Techniques, Symmetric-key algorithm, image encryption, Public-key cryptography, Plaintext, Computer science, Throughput, TK1-9971, Probabilistic encryption, Algorithm, Color Image Encryption, Applications of Elliptic Curve Cryptography in Security, Computer Science, Physical Sciences, Cryptography, Telecommunications, Wireless, Bijective substitution box, Computer vision, Electrical engineering. Electronics. Nuclear engineering, Computer Vision and Pattern Recognition, chaotic map, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 1%
Top 10%
Top 1%
gold