Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel approach for solving decision-making problems with stochastic linear-fractional models

Authors: Watheq Laith; Rasheed Al-Salih; Ali Habeeb;

A novel approach for solving decision-making problems with stochastic linear-fractional models

Abstract

Stochastic chance-constrained optimization has a wide range of real-world applications. In some real-world applications, the decision-maker has to formulate the problem as a fractional model where some or all of the coefficients are random variables with joint probability distribution. Therefore, these types of problems can deal with bi-objective problems and reflect system efficiency. In this paper, we present a novel approach to formulate and solve stochastic chance-constrained linear fractional programming models. This approach is an extension of the deterministic fractional model. The proposed approach, for solving these types of stochastic decision-making problems with the fractional objective function, is constructed using the following two-step procedure. In the first stage, we transform the stochastic linear fractional model into two stochastic linear models using the goal programming approach, where the first goal represents the numerator and the second goal represents the denominator for the stochastic fractional model. The resulting stochastic goal programming problem is formulated. The second stage implies solving stochastic goal programming problem, by replacing the stochastic parameters of the model with their expectations. The resulting deterministic goal programming problem is built and solved using Win QSB solver. Then, using the optimal value for the first and second goals, the optimal solution for the fractional model is obtained. An example is presented to illustrate our approach, where we assume the stochastic parameters have a uniform distribution. Hence, the proposed approach for solving the stochastic linear fractional model is efficient and easy to implement. The advantage of the proposed approach is the ability to use it for formulating and solving any decision-making problems with the stochastic linear fractional model based on transforming the stochastic linear model to a deterministic linear model, by replacing the stochastic parameters with their corresponding expectations and transforming the deterministic linear fractional model to a deterministic linear model using the goal programming approach

Keywords

стохастические модели, Fractional Programming Problems, совместное распределение вероятностей, цільове програмування, целевое программирование, задачі дробового програмування, Stochastic Models, Goal Programming, Joint Probability Distribution, стохастичні моделі, спільний розподіл ймовірностей, задачи дробного программирования

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
    download downloads 1
  • 8
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
8
1
Green
gold