
arXiv: 2207.00406
We address the enumeration of coprime polynomial pairs over $\F_2$ where both polynomials have a nonzero constant term, motivated by the construction of orthogonal Latin squares via cellular automata. To this end, we leverage on Benjamin and Bennett's bijection between coprime and non-coprime pairs, which is based on the sequences of quotients visited by dilcuE's algorithm (i.e. Euclid's algorithm ran backward). This allows us to break our analysis of the quotients in three parts, namely the enumeration and count of: (1) sequences of constant terms, (2) sequences of degrees, and (3) sequences of intermediate terms. For (1), we show that the sequences of constant terms form a regular language, and use classic results from algebraic language theory to count them. Concerning (2), we remark that the sequences of degrees correspond to compositions of natural numbers, which have a simple combinatorial description. Finally, we show that for (3) the intermediate terms can be freely chosen. Putting these three obeservations together, we devise a combinatorial algorithm to enumerate all such coprime pairs of a given degree, and present an alternative derivation of their counting formula.
12 pages, 2 figures
FOS: Computer and information sciences, Formal Languages and Automata Theory (cs.FL), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Computer Science - Formal Languages and Automata Theory, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO)
FOS: Computer and information sciences, Formal Languages and Automata Theory (cs.FL), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Computer Science - Formal Languages and Automata Theory, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
