Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Enumeration Algorithm for Binary Coprime Polynomials with Nonzero Constant Term

Authors: Formenti, Enrico; Mariot, Luca;

An Enumeration Algorithm for Binary Coprime Polynomials with Nonzero Constant Term

Abstract

We address the enumeration of coprime polynomial pairs over $\F_2$ where both polynomials have a nonzero constant term, motivated by the construction of orthogonal Latin squares via cellular automata. To this end, we leverage on Benjamin and Bennett's bijection between coprime and non-coprime pairs, which is based on the sequences of quotients visited by dilcuE's algorithm (i.e. Euclid's algorithm ran backward). This allows us to break our analysis of the quotients in three parts, namely the enumeration and count of: (1) sequences of constant terms, (2) sequences of degrees, and (3) sequences of intermediate terms. For (1), we show that the sequences of constant terms form a regular language, and use classic results from algebraic language theory to count them. Concerning (2), we remark that the sequences of degrees correspond to compositions of natural numbers, which have a simple combinatorial description. Finally, we show that for (3) the intermediate terms can be freely chosen. Putting these three obeservations together, we devise a combinatorial algorithm to enumerate all such coprime pairs of a given degree, and present an alternative derivation of their counting formula.

12 pages, 2 figures

Keywords

FOS: Computer and information sciences, Formal Languages and Automata Theory (cs.FL), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Computer Science - Formal Languages and Automata Theory, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green