
A generalized Reed-Muller expression (GRM) is obtained by negating some of the literals in a positive polarity Reed-Muller expression (PPRM). There are at most 2/sup n2(n-1)/ different GRMs for an n-variable function. A minimum GRM is one with the fewest products. This paper presents certain properties and an exact minimization algorithm for GRMs. The minimization algorithm uses binary decision diagrams. Up to five variables, all the representative functions of NP-equivalence classes were generated, and minimized. A table compares the number of products necessary to represent 5-variable functions for 7 classes of expressions: FPRMs, KROs, PSDRMs, PSD-KROs, GRMs, ESOPs, and SOPs. GRMs require, on the average, fewer products than sum-of-products expressions and have easily testable realizations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
