Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Parallel and Distributed Systems
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Buffer Overflow Detection on GPU

Authors: Bang Di; Jianhua Sun; Hao Chen; Dong Li;

Efficient Buffer Overflow Detection on GPU

Abstract

Rich thread-level parallelism of GPU has motivated co-running GPU kernels on a single GPU. However, when GPU kernels co-run, it is possible that one kernel can leverage buffer overflow to attack another kernel running on the same GPU. There is very limited work aiming to detect buffer overflow for GPU. Existing work has either large performance overhead or limited capability in detecting buffer overflow. In this article, we introduce GMODx, a runtime software system that can detect GPU buffer overflow. GMODx performs always-on monitoring on allocated memory based on a canary-based design. First , for the fine-grained memory management, GMODx introduces a set of byte arrays to store buffer information for overflow detection. Techniques, such as lock-free accesses to the byte arrays, delayed memory free, efficient memory reallocation, and garbage collection for the byte arrays, are proposed to achieve high performance. Second , for the coarse-grained memory management, GMODx utilizes unified memory to delegate the always-on monitoring to the CPU. To reduce performance overhead, we propose several techniques, including customized list data structure and specific optimizations against the unified memory. For micro-benchmarking, our experiments show that GMODx is capable of detecting buffer overflow for the fine-grained memory management without performance loss, and that it incurs small runtime overhead (4.2 percent on average and up to 9.7 percent) for the coarse-grained memory management. For real workloads, we deploy GMODx on the TensorFlow framework, it only causes 0.8 percent overhead on average (up to 1.8 percent).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!