Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
https://dx.doi.org/10.60692/vc...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/11...
Other literature type . 2021
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Enhanced Multi-Objective Non-Dominated Sorting Genetic Routing Algorithm for Improving the QoS in Wireless Sensor Networks

خوارزمية محسنة متعددة الأهداف للتوجيه الجيني للفرز غير المسيطر عليه لتحسين جودة الخدمة في شبكات الاستشعار اللاسلكية
Authors: Mahmoud Moshref; Rizik Al-Sayyed; Saleh Al-Sharaeh;

An Enhanced Multi-Objective Non-Dominated Sorting Genetic Routing Algorithm for Improving the QoS in Wireless Sensor Networks

Abstract

Ces dernières années, les réseaux de capteurs sans fil (WSN) ont bénéficié de leur intégration aux applications de l'Internet des objets (IoT). L'utilisation du WSN pour les applications de surveillance et de traçage montre une accélération massive, que ce soit à l'intérieur ou à l'extérieur. WSN est construit à partir de capteurs interconnectés, à ressources limitées (batterie), ce qui nécessite une importance considérable sur les stratégies de déploiement et de routage, pour améliorer les performances de la qualité de service (QoS) dans les WSN. De nombreuses stratégies existantes sont basées sur des algorithmes métaheuristiques tels que les algorithmes génétiques pour résoudre le problème. Cette recherche propose un nouvel algorithme, Enhanced Non-Dominated Sorting Genetic Routing Algorithm (ENSGRA), pour améliorer la QoS dans les WSN. L'algorithme proposé repose sur l'algorithme génétique de tri non dominé 3 (NSGA-III), mais ajuste les points de référence à l'aide d'un vecteur programmé en grappes pondérées dynamiques pour obtenir de nouvelles solutions. De plus, ENSGRA peut être utilisé pour trouver une intégration entre deux parents crossover avec multiparent crossover (MPX), pour produire plusieurs enfants et améliorer la nouvelle progéniture pour obtenir les fronts de Pareto (PF) optimaux. Cet algorithme excelle par rapport à l'optimisation décalée de l'essaim de particules de saut multi-objectif, l'algorithme génétique de tri non dominé-II et NSGA-III en termes de modèle QoS (pourcentage d'optimisation de 31 %). Les résultats montrent que l'ENSGRA proposé est supérieur aux autres algorithmes dans les mesures d'évaluation pour les algorithmes multi-objectifs.

En los últimos años, las redes de sensores inalámbricos (WSN) se han beneficiado de su integración con las aplicaciones de Internet de las cosas (IoT). El uso de WSN para aplicaciones de monitoreo y rastreo muestra una aceleración masiva, ya sea en interiores o exteriores. WSN se construye a partir de sensores interconectados, de recursos limitados (batería), lo que requiere una importancia considerable en las estrategias de despliegue y enrutamiento, para mejorar el rendimiento de la Calidad de Servicio (QoS) en las WSN. Muchas de las estrategias existentes se basan en algoritmos metaheurísticos como los Algoritmos Genéticos para resolver el problema. Esta investigación propone un nuevo algoritmo, Enhanced Non-Dominated Sorting Genetic Routing Algorithm (ENSGRA), para mejorar la QoS en las WSN. El algoritmo propuesto se basa en el algoritmo genético de clasificación no dominado 3 (NSGA-III), pero ajusta los puntos de referencia mediante el uso de un vector programado agrupado ponderado dinámico para obtener nuevas soluciones. Además, ENSGRA se puede utilizar para encontrar una integración entre dos padres crossover con multi-parent crossover (MPX), para producir múltiples hijos y mejorar la nueva descendencia para obtener los Frentes de Pareto (PF) óptimos. Este algoritmo sobresale en comparación con la optimización de enjambre de partículas saltarinas multiobjetivo retrasada, el algoritmo genético de clasificación no dominado-II y NSGA-III en términos del modelo QoS (porcentaje de optimización del 31%). Los resultados muestran que el ENSGRA propuesto es superior a otros algoritmos en las medidas de evaluación para algoritmos multiobjetivo.

In recent years, Wireless Sensor Networks (WSNs) have benefitted from their integration with Internet of Things (IoT) applications. WSN usage for monitoring and tracing applications shows massive acceleration, whether indoors or outdoors. WSN is constructed from interconnected sensors, limited resource (battery), which requires considerable importance on deployment and routing strategies, to improve the performance of Quality of Service (QoS) in WSNs. Many of the existing strategies are based on metaheuristics algorithms such as Genetic Algorithms to resolve the problem. This research proposes a new algorithm, Enhanced Non-Dominated Sorting Genetic Routing Algorithm (ENSGRA), to improve the QoS in WSNs. The proposed algorithm relies on Non-Dominated Sorting Genetic Algorithm 3 (NSGA-III), but adjusts reference points through the use of a dynamic weighted clustered scheduled vector to obtain new solutions. Moreover, ENSGRA can be used to find an integration between two parents crossover with multi-parent crossover (MPX), to produce multiple children and improve new offspring to obtain the optimal Pareto Fronts (PF). This algorithm excels when compared with the lagged multi-objective jumping particle swarm optimization, Non-dominated Sorting Genetic Algorithm–II and NSGA-III in terms of the QoS model (31% optimization percentage). Results show that the proposed ENSGRA is superior over other algorithms in evaluation measures for multi-objective algorithms.

في السنوات الأخيرة، استفادت شبكات الاستشعار اللاسلكية (WSNs) من تكاملها مع تطبيقات إنترنت الأشياء (IoT). يُظهر استخدام WSN لتطبيقات المراقبة والتتبع تسارعًا هائلاً، سواء في الداخل أو في الخارج. تم إنشاء WSN من أجهزة استشعار مترابطة، وموارد محدودة (بطارية)، والتي تتطلب أهمية كبيرة في استراتيجيات النشر والتوجيه، لتحسين أداء جودة الخدمة (QoS) في WSNs. تعتمد العديد من الاستراتيجيات الحالية على خوارزميات ما وراء الهندسة مثل الخوارزميات الجينية لحل المشكلة. يقترح هذا البحث خوارزمية جديدة، وهي خوارزمية التوجيه الوراثي المحسنة للفرز غير المسيطر عليه (ENSGRA)، لتحسين جودة الخدمة في WSNs. تعتمد الخوارزمية المقترحة على الخوارزمية الجينية للفرز غير المسيطر عليه 3 (NSGA - III)، ولكنها تضبط النقاط المرجعية من خلال استخدام متجه مجدول ديناميكي مرجح للحصول على حلول جديدة. علاوة على ذلك، يمكن استخدام ENSGRA لإيجاد تكامل بين تقاطع الوالدين مع تقاطع متعدد الوالدين (MPX)، لإنتاج أطفال متعددين وتحسين ذرية جديدة للحصول على جبهات باريتو المثلى (PF). تتفوق هذه الخوارزمية عند مقارنتها بتحسين سرب الجسيمات القافزة متعدد الأهداف المتأخر، والخوارزمية الجينية للفرز غير المسيطر عليه - II و NSGA - III من حيث نموذج جودة الخدمة (نسبة التحسين 31 ٪). تظهر النتائج أن ENSGRA المقترحة متفوقة على الخوارزميات الأخرى في مقاييس التقييم للخوارزميات متعددة الأهداف.

Related Organizations
Keywords

pareto front, Artificial intelligence, Computer Networks and Communications, Wireless Energy Harvesting, Wireless Energy Harvesting and Information Transfer, Real-time computing, Engineering, Quality of service, Machine learning, FOS: Electrical engineering, electronic engineering, information engineering, Dynamic Source Routing, multi-objective algorithms, scheduling, Electrical and Electronic Engineering, wireless sensor networks, Routing (electronic design automation), Computer network, Wireless Sensor Networks: Survey and Applications, Genetic Algorithms, Sorting, Particle swarm optimization, Routing Techniques, Computer science, Distributed computing, TK1-9971, Routing protocol, Multi-objective optimization, Algorithm, Computational Theory and Mathematics, Genetic algorithm, Computer Science, Physical Sciences, Crossover, Electrical engineering. Electronics. Nuclear engineering, Wireless Sensor Networks, Sensor Networks, Distance-vector routing protocol, Multiobjective Optimization in Evolutionary Algorithms, Wireless sensor network, clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold