Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icc647...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Linear Convergence of PI Consensus Algorithm under the Restricted Secant Inequality

Authors: Chakrabarti, Kushal; Baranwal, Mayank;

On Linear Convergence of PI Consensus Algorithm under the Restricted Secant Inequality

Abstract

This paper considers solving distributed optimization problems in peer-to-peer multi-agent networks. The network is synchronous and connected. By using the proportional-integral (PI) control strategy, various algorithms with fixed stepsize have been developed. Two notable among them are the PI algorithm and the PI consensus algorithm. Although the PI algorithm has provable linear or exponential convergence without the standard requirement of (strong) convexity, a similar guarantee for the PI consensus algorithm is unavailable. In this paper, using Lyapunov theory, we guarantee exponential convergence of the PI consensus algorithm for global cost functions that satisfy the restricted secant inequality, with rate-matching discretization, without requiring convexity. To accelerate the PI consensus algorithm, we incorporate local pre-conditioning in the form of constant positive definite matrices and numerically validate its efficiency compared to the prominent distributed convex optimization algorithms. Unlike classical pre-conditioning, where only the gradients are multiplied by a pre-conditioner, the proposed pre-conditioning modifies both the gradients and the consensus terms, thereby controlling the effect of the communication graph on the algorithm.

Accepted for publication at the 2024 Tenth Indian Control Conference (ICC-10)

Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green