Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/igarss...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

Multi-Scale Feedback Convolutional Sparse Coding Network for Saliency Detection in Remote Sensing Images

Authors: Zhou Huang; Huai-Xin Chen; Cheng-Wu Bai; Li-Li Yan;

Multi-Scale Feedback Convolutional Sparse Coding Network for Saliency Detection in Remote Sensing Images

Abstract

Due to the huge difference in the shooting conditions of remote sensing images (RSI), the RSI itself has variable scales, multiple scenes and cluttered backgrounds, which lead to the poor detection effect of the SOD method for natural scene images (NSI). By exploring the multi-scale characteristics of RSI, combining convolutional sparse coding (CSC) and convolutional neural network (CNN), this paper proposes a multiscale feedback CSC (MFC) network for SOD of optical RSI. Specifically, the soft threshold shrinkage (SST) function and the CNN components are first used to construct the CSC block (CSCB). Then, the multi-scale image representations are fed into the stacked CSCB to extract the features thoroughly. Finally, the side-out features are integrated through the cross-feature fusion module (CFF) with a top-down feedback strategy. The comprehensive evaluation results with the state-of-the-art (SOTA) competitors on the ORSSD and EORSSD datasets demonstrate the proposed model's priority.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!