Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ghent University Aca...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.23919/fusio...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drone Ego-Noise Cancellation for Improved Speech Capture using Deep Convolutional Autoencoder Assisted Multistage Beamforming

Authors: Song, Yanjue; Kindt, Stijn; Madhu, Nilesh;

Drone Ego-Noise Cancellation for Improved Speech Capture using Deep Convolutional Autoencoder Assisted Multistage Beamforming

Abstract

We propose a multistage approach for enhancing speech captured by a drone-mounted microphone array. The key challenge is suppressing the drone ego-noise, which is the major source of interference in such captures. Since the location of the target is not known a priori, we first apply a UNet-based deep convolutional autoencoder (AE) individually to each microphone signal. The AE generates a time-frequency mask is an element of [0, 1] per signal, where high values correspond to time-frequency points with relatively good signal-to-noise ratios (SNRs). The masks are pooled across all microphones and the aggregated mask is used to steer an adaptive, frequency domain beamformer, yielding a signal with an improved SNR. This beamformer output, after being fed back to the AE, now yields an improved mask - which is used for re-focussing the beamformer. This combination of AE and beamformer, which can be applied to the signals in multiple 'passes' is termed multistage beamforming. The approach is developed and evaluated on a self-collected database. For the AE - when used to steer a beamformer - a training target that preserves more speech at the cost of less noise suppression outperforms an aggressive training target that suppresses more noise at the cost of more speech distortion. This, in combination with max-pooling of the multi-channel mask - which also lets through more speech (and noise) compared with median pooling - performs best. The experiments further demonstrate that the multistage approach brings extra benefit to the speech quality and intelligibility when the input SNR is >= -10 dB, and yields comprehensible outputs when the input has a SNR above -5 dB.

Country
Belgium
Related Organizations
Keywords

Technology and Engineering, UNet, Drone, ego-noise reduction, REDUCTION, ENHANCEMENT, unmanned aerial vehicle (UAV), autoencoders, MVDR, MWF, beamformer, speech enhancement

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green