Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Qatar University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Knowledge and Data Engineering
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Complementary Learning Subnetworks Towards Parameter-Efficient Class-Incremental Learning

Authors: Depeng Li 0001; Zhigang Zeng; Wei Dai 0004; Ponnuthurai Nagaratnam Suganthan;

Complementary Learning Subnetworks Towards Parameter-Efficient Class-Incremental Learning

Abstract

In the scenario of class-incremental learning (CIL), deep neural networks have to adapt their model parameters to non-stationary data distributions, e.g., the emergence of new classes over time. To mitigate the catastrophic forgetting phenomenon, typical CIL methods either cumulatively store exemplars of old classes for retraining model parameters from scratch or progressively expand model size as new classes arrive, which, however, compromises their practical value due to little attention paid to parameter efficiency. In this paper, we contribute a novel solution, effective control of the parameters of a well-trained model, by the synergy between two complementary learning subnetworks. Specifically, we integrate one plastic feature extractor and one analytical feed-forward classifier into a unified framework amenable to streaming data. In each CIL session, it achieves non-overwritten parameter updates in a cost-effective manner, neither revisiting old task data nor extending previously learned networks; Instead, it accommodates new tasks by attaching a tiny set of declarative parameters to its backbone, in which only one matrix per task or one vector per class is kept for knowledge retention. Experimental results on a variety of task sequences demonstrate that our method achieves competitive results against state-of-the-art CIL approaches, especially in accuracy gain, knowledge transfer, training efficiency, and task-order robustness. Furthermore, a graceful forgetting implementation on previously learned trivial tasks is empirically investigated to make its non-growing backbone (i.e., a model with limited network capacity) suffice to train on more incoming tasks.

Country
Qatar
Related Organizations
Keywords

complementary learning system, class-incremental learning, streaming data modeling, Non-stationary data

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green