
This paper addresses two key challenges in distributed Large Language Model (LLM) inference at the edge: 1) cost-efficient and fair task allocation, and 2) dynamic scheduling under deadline constraints. We propose two mechanisms: the Fair Cost-Efficient Incentive Mechanism (FCIM) for task and layer assignment, and the Adaptive Dynamic Scheduling Algorithm (ADSA) for execution scheduling on individual devices. FCIM is an auction-based mechanism that selects cost-effective, memory-feasible devices while minimizing task latency, reward cost, and device usage. Its adaptive reward design ensures positive utility and fairness, even under shifting system priorities. ADSA enables preemption-aware, deadline-driven scheduling by dynamically reordering tasks based on arrival time and workload characteristics. Simulations demonstrate that FCIM reduces communication overhead by 54.7% and task completion time by 36.9% compared to static and performance-driven baselines, while ADSA reduces queueing delay by 39% under strict deadline constraints.
fair incentive mechanism, edge computing, resource allocation, large language models, Adaptive scheduling, Electrical engineering. Electronics. Nuclear engineering, distributed AI, TK1-9971
fair incentive mechanism, edge computing, resource allocation, large language models, Adaptive scheduling, Electrical engineering. Electronics. Nuclear engineering, distributed AI, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
