
Malware is a primary concern in cybersecurity, being one of the attacker's favorite cyberweapons. Over time, malware evolves not only in complexity but also in diversity and quantity. Malware analysis automation is thus crucial. In this paper we present ECDGs, a shorter call graph representation, and a new similarity function that is accurate and robust. Toward this goal, we revisit some principles of malware analysis research to define basic primitives and an evaluation paradigm addressed for the setup of more reliable experiments. Our benchmark shows that our similarity function is very efficient in practice, achieving speedup rates of 3.30x and 354, 11x wrt. radiff2 for the standard and the cache-enhanced implementations, respectively. Our evaluations generate clusters that produce almost unerring results-homogeneity score of 0.983 for the accuracy phase-and marginal information loss for a highly polluted dataset-NMI score of 0.974 between initial and final clusters of the robustness phase. Overall, ECDGs and our similarity function enable autonomous frameworks for malware search and clustering that can assist human-based analysis or improve classification models for malware analysis.
malware, binary code analysis, call graph, [INFO] Computer Science [cs], similarity
malware, binary code analysis, call graph, [INFO] Computer Science [cs], similarity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
