
handle: 10356/104226 , 10220/16980
Superresolution depends on near-field capture and transfer of high spatial frequencies from the scattering object. These evanescent waves are transferred to a near-field image domain using a negative index material. Measuring images with subwavelength scale resolution in the near field by scanning is not practical and ignores inevitable object–lens–image coupling phenomena as well as the need to employ inverse scattering algorithms. An alternative approach based on compressive sampling permits the use of a single fixed detector. Traditionally, in such a system, an image-bearing wavefront is projected onto a series of patterns (= basis functions) and the transmitted light integrated by a lens onto a single-point detector. Image reconstruction is possible by weighting each basis function with its measured coefficient and summing, including basis functions representing evanescent waves. We employ a single fixed detector in the back focal plane of a negative index concave lens and basis functions realized by structured illumination from combinations of a set of discrete sources. We have investigated this as an approach to recover subwavelength scale details about a scattering object and report our results.
:Engineering::Electrical and electronic engineering::Electronic systems::Signal processing [DRNTU], DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing, 530
:Engineering::Electrical and electronic engineering::Electronic systems::Signal processing [DRNTU], DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing, 530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
