
pmid: 17382363
The compression error of post-compression based coded excitation techniques increases with decreasing f-number, which causes the elevation of side-lobe levels. In this paper, a post-compression based coded excitation technique with reduced compression errors through dynamic aperture control is proposed. To improve the near-field resolution with no frame rate reduction, the proposed method performs simultaneous transmit multi-zone focusing using two mutually orthogonal complementary Golay codes. In the proposed method, the two mutually orthogonal sequences of length 16 are simultaneously transmitted toward two different focal depths, which are separately compressed into two short pulses on receive after dynamic focusing is performed. After carrying out the same transmit-receive operation for the same scan line with the complementary set of the orthogonal Golay codes, a single scan line with two transmit foci is obtained. The computer simulation results using a linear array with a center frequency of 7.5 MHz and 60% 6 dB bandwidth show that the range side-lobe level can be suppressed below -50 dB, when f-number is maintained not smaller than 3. The performance of the proposed scheme for a smaller f-number of 2 was also verified through actual experiments using a 3.85 MHz curved linear array with 60% 6 dB bandwidth. Both the simulation and experimental results show that the proposed method provides improved lateral resolution compared to the conventional pre-compressed and post-compression based coded excitation imaging using Golay codes.
Imaging, Three-Dimensional, Phantoms, Imaging, Image Interpretation, Computer-Assisted, Reproducibility of Results, Data Compression, Image Enhancement, Sensitivity and Specificity, Algorithms, Ultrasonography
Imaging, Three-Dimensional, Phantoms, Imaging, Image Interpretation, Computer-Assisted, Reproducibility of Results, Data Compression, Image Enhancement, Sensitivity and Specificity, Algorithms, Ultrasonography
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
