Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parameterized Algorithms for Matching Integer Programs with Additional Rows and Columns

Authors: Alexandra Lassota; Koen Ligthart;

Parameterized Algorithms for Matching Integer Programs with Additional Rows and Columns

Abstract

We study integer linear programs (ILP) of the form $\min\{c^\top x\ \vert\ Ax=b,l\le x\le u,x\in\mathbb Z^n\}$ and analyze their parameterized complexity with respect to their distance to the generalized matching problem, following the well-established approach of capturing the hardness of a problem by the distance to triviality. The generalized matching problem is an ILP where each column of the constraint matrix has a $1$-norm of at most $2$. It captures several well-known polynomial time solvable problems such as matching and flow problems. We parameterize by the size of variable and constraint backdoors, which measure the least number of columns or rows that must be deleted to obtain a generalized matching ILP. We present the following results: (i) a fixed-parameter tractable (FPT) algorithm for ILPs parameterized by the size $p$ of a minimum variable backdoor to generalized matching; (ii) a randomized slice-wise polynomial (XP) time algorithm for ILPs parameterized by the size $p+h$ of a mixed variable plus constraint backdoor to generalized matching as long as $c$ and $A$ are encoded in unary; (iii) we complement (ii) by proving that solving ILPs is W[1]-hard when parameterized by the size of a minimum constraint backdoor $h$ even when all coefficients are bounded. To obtain (i), we prove a variant of lattice-convexity of the degree sequences of weighted $b$-matchings, which we study in the light of SBO jump M-convex functions. This allows us to model the matching part as a polyhedral constraint on the integer backdoor variables. The resulting ILP is solved using an FPT integer programming algorithm. For (ii), the randomized XP time algorithm is obtained by pseudo-polynomially reducing the problem to the exact matching problem. To prevent an exponential blowup in terms of the encoding length of $b$, we bound the proximity of the ILP through a subdeterminant based circuit bound.

Countries
Netherlands, Germany
Keywords

FOS: Computer and information sciences, Computational Complexity, Matchings, fixed-parameter Tractability, polyhedral Optimization, Computational Complexity (cs.CC), Integer Programming, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities