Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AgriEngineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AgriEngineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AgriEngineering
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Driveway Detection for Weed Management in Cassava Plantation Fields in Thailand Using Ground Imagery Datasets and Deep Learning Models

Authors: Ithiphat Opasatian; Tofael Ahamed;

Driveway Detection for Weed Management in Cassava Plantation Fields in Thailand Using Ground Imagery Datasets and Deep Learning Models

Abstract

Weeds reduce cassava root yields and infest furrow areas quickly. The use of mechanical weeders has been introduced in Thailand; however, manually aligning the weeders with each planting row and at headland turns is still challenging. It is critical to clear weeds on furrow slopes and driveways via mechanical weeders. Automation can support this difficult work for weed management via driveway detection. In this context, deep learning algorithms have the potential to train models to detect driveways through furrow image segmentation. Therefore, the purpose of this research was to develop an image segmentation model for automated weed control operations in cassava plantation fields. To achieve this, image datasets were obtained from various fields to aid weed detection models in automated weed management. Three models—Mask R-CNN, YOLACT, and YOLOv8n-seg—were used to construct the image segmentation model, and they were evaluated according to their precision, recall, and FPS. The results show that YOLOv8n-seg achieved the highest accuracy and FPS (114.94 FPS); however, it experienced issues with frame segmentation during video testing. In contrast, YOLACT had no segmentation issues in the video tests (23.45 FPS), indicating its potential for driveway segmentation in cassava plantations. In summary, image segmentation for detecting driveways can improve weed management in cassava fields, and the further automation of low-cost mechanical weeders in tropical climates can be performed based on the YOLACT algorithm.

Related Organizations
Keywords

Agriculture (General), TA1-2040, image segmentation algorithms, ground remote sensing, Engineering (General). Civil engineering (General), cassava, S1-972

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold