Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Conference object . 2025
License: CC BY
https://doi.org/10.1145/371782...
Article . 2025 . Peer-reviewed
Data sources: Crossref
ETH Zürich Research Collection
Conference object . 2025
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vizing’s Theorem in Near-Linear Time

Authors: Sepehr Assadi; Soheil Behnezhad; Sayan Bhattacharya; Martín Costa; Shay Solomon; Tianyi Zhang 0008;

Vizing’s Theorem in Near-Linear Time

Abstract

Vizing's theorem states that any n-vertex m-edge graph of maximum degree Δ can be edge colored using at most Δ + 1 different colors [Vizing, 1964]. Vizing's original proof is algorithmic and shows that such an edge coloring can be found in O(mn) time. This was subsequently improved to Õ(m$\sqrt{n}$) time, independently by [Arjomandi, 1982] and by [Gabow et al., 1985]. Very recently, independently and concurrently, using randomization, this runtime bound was further improved to Õ(n$^2$) by [Assadi, 2024] and Õ(mn$^{1/3}$) by [Bhattacharya, Carmon, Costa, Solomon and Zhang, 2024] (and subsequently to Õ(mn$^{1/4}$) by [Bhattacharya, Costa, Solomon and Zhang, 2024]). In this paper, we present a randomized algorithm that computes a (Δ +1)-edge coloring in near-linear time - in fact, only O(mlogΔ) time - with high probability, giving a near-optimal algorithm for this fundamental problem.

STOC '25: Proceedings of the 57th Annual ACM Symposium on Theory of Computing

ISBN:979-8-4007-1510-5

Country
Switzerland
Related Organizations
Keywords

FOS: Computer and information sciences, Vizing’s Theorem, Data Structures and Algorithms, Edge Coloring; Vizing’s Theorem, Edge Coloring, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities