Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Electrical Power & Energy Systems
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Munin - Open Research Archive
Article . 2018 . Peer-reviewed
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning

Authors: Nguyen, van Nhan; Jenssen, Robert; Roverso, Davide;

Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning

Abstract

Abstract To maintain the reliability, availability, and sustainability of electricity supply, electricity companies regularly perform visual inspections on their transmission and distribution networks. These inspections have been typically carried out using foot patrol and/or helicopter-assisted methods to plan for necessary repair or replacement works before any major damage, which may cause power outage. This solution is quite slow, expensive, and potentially dangerous. In recent years, numerous researches have been conducted to automate the visual inspections by using automated helicopters, flying robots, and/or climbing robots. However, due to the high accuracy requirements of the task and its unique challenges, automatic vision-based inspection has not been widely adopted. In this paper, with the aim of providing a good starting point for researchers who are interested in developing a fully automatic autonomous vision-based power line inspection system, we conduct an extensive literature review. First, we examine existing power line inspection methods with special attention paid to highlight their advantages and disadvantages. Next, we summarize well-suited tasks and review potential data sources for automatic vision-based inspection. Then, we survey existing automatic vision-based power line inspection systems. Based on that, we propose a new automatic autonomous vision-based power line inspection concept that uses Unmanned Aerial Vehicle (UAV) inspection as the main inspection method, optical images as the primary data source, and deep learning as the backbone of data analysis and inspection. Then, we present an overview of possibilities and challenges of deep vision (deep learning for computer vision) approaches for both UAV navigation and UAV inspection and discuss possible solutions to the challenges. Finally, we conclude the paper with an outlook for the future of this field and propose potential next steps for implementing the concept.

Country
Norway
Related Organizations
Keywords

Power line inspection, VDP::Teknologi: 500::Elektrotekniske fag: 540::Elkraft: 542, VDP::Technology: 500::Information and communication technology: 550::Other information technology: 559, Vision-based inspection, Deep learning, VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559, UAVs, VDP::Technology: 500::Electrotechnical disciplines: 540::Electrical power engineering: 542

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    469
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
469
Top 0.1%
Top 0.1%
Top 0.1%
Green
gold