
A synthesis method of azidocellulose nitrate by chemical interaction between cellulose nitrates or chlorocellulose nitrates with various degree of chlorination with sodium azide in a medium of dimethylsulfoxide and with heating in the temperature range 40–70 °C is proposed. The chemical composition, structure and properties of the obtained compounds are determined on the basis of combination of physico-chemical methods of analysis: IR, 1H NMR and 13C NMR spectroscopy; elemental analysis; gel permeation chromatography; viscometry; thermogravimetric analysis; differential scanning calorimetry; thermal polarization microscopy. The main directions of the chemical interaction between polymers and sodium azide were predicted by quantum-chemical methods using the Gaussian 09 software. The reaction mechanism was confirmed by a mathematical model of kinetics. The scheme of the preferred simultaneously going reaction directions has been composed, which includes substitution of nitrate groups by the azide fragment; rupture of polymer chains by β-glycosidic bond leading to depolymerization; opening of the glucopyranose cycle with addition of the azidogroup to the formed free bonds. Use of the chlorocellulose nitrate for the azidation allows to get products with a higher degree of substitution by azidogroups, and the rate of azidation of chlorocellulose nitrate depends on halogen content directly.
азидирование, нуклеофильное замещение, переработка полимеров, химическая модификация, нитрат целлюлозы, cellulose nitrate, azidation, nucleophilic substitution, chemical modification, polymer processing
азидирование, нуклеофильное замещение, переработка полимеров, химическая модификация, нитрат целлюлозы, cellulose nitrate, azidation, nucleophilic substitution, chemical modification, polymer processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
