
Abstract Matrix factorization algorithm is one of the recommendable algorithms. In order to tackle the inefficiencies of the traditional matrix factorization algorithm like the slow training time and the insufficient computing resource for the mass data, a parallelization algorithm of singular value decomposition (SVD) under the Spark framework is proposed to perform SVD, standardization, and dimensionality reduction for the user-rating matrix, and obtain the user-feature matrix and project-feature matrix. The recommendation model is obtained by determining the prediction rating. MovieLens data show that this algorithm can significantly shorten the training time of the model, improve the running efficiency of the recommendation algorithms for the mass data, and improve the algorithm accuracy.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
