
handle: 10498/25369
The paper presents a new method for solving fully fuzzy linear programming problems with inequality constraints and parameterized fuzzy numbers, by means of solving multiobjective linear programming problems. The equivalence is proven between the set of nondominated solutions of the fully fuzzy linear programming problem and the set of weakly efficient solutions of the considered and related multiobjective linear problem. The whole set of nondominated solutions for a fully fuzzy linear programming problem is explicitly obtained by means of a finite generator set.
The first author was partially supported by the research project MTM2017-89577-P (MINECO, Spain), and the second author was partially supported by Spanish Ministry of Economy and Competitiveness through grants AYA2016-75931-C2-1-P, AYA2015-68012-C2-1, AYA2014-57490-P, AYA2013-40611-P, and from the Consejería de Educación y Ciencia (Junta de Andalucía) through TIC-101, TIC-4075 and TIC-114.
fully fuzzy linear programming problem, multiobjective optimization, Fuzzy and other nonstochastic uncertainty mathematical programming, Fully fuzzy linear programming problem, Parameterized fuzzy numbers, Multi-objective and goal programming, parameterized fuzzy numbers, Multiobjective optimization
fully fuzzy linear programming problem, multiobjective optimization, Fuzzy and other nonstochastic uncertainty mathematical programming, Fully fuzzy linear programming problem, Parameterized fuzzy numbers, Multi-objective and goal programming, parameterized fuzzy numbers, Multiobjective optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
