Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icde65...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC SA
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient Learning-Based Graph Simulation for Temporal Graphs

Authors: Xiang, Sheng; Xu, Chenhao; Cheng, Dawei; Wang, Xiaoyang; Zhang, Ying;

Efficient Learning-Based Graph Simulation for Temporal Graphs

Abstract

Graph simulation has recently received a surge of attention in graph processing and analytics. In real-life applications, e.g. social science, biology, and chemistry, many graphs are composed of a series of evolving graphs (i.e., temporal graphs). While most of the existing graph generators focus on static graphs, the temporal information of the graphs is ignored. In this paper, we focus on simulating temporal graphs, which aim to reproduce the structural and temporal properties of the observed real-life temporal graphs. In this paper, we first give an overview of the existing temporal graph generators, including recently emerged learning-based approaches. Most of these learning-based methods suffer from one of the limitations: low efficiency in training or slow generating, especially for temporal random walk-based methods. Therefore, we propose an efficient learning-based approach to generate graph snapshots, namely temporal graph autoencoder (TGAE). Specifically, we propose an attention-based graph encoder to encode temporal and structural characteristics on sampled ego-graphs. And we proposed an ego-graph decoder that can achieve a good trade-off between simulation quality and efficiency in temporal graph generation. Finally, the experimental evaluation is conducted among our proposed TGAE and representative temporal graph generators on real-life temporal graphs and synthesized graphs. It is reported that our proposed approach outperforms the state-of-the-art temporal graph generators by means of simulation quality and efficiency.

14 pages, 6 figures, IEEE ICDE 2025

Related Organizations
Keywords

Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green