Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Wireless Personal Co...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wireless Personal Communications
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust Tomlinson-Harashima Precoders for Multiuser MISO Downlink with Imperfect CSI

Authors: P. Ubaidulla; A. Chockalingam;

Robust Tomlinson-Harashima Precoders for Multiuser MISO Downlink with Imperfect CSI

Abstract

In this paper, we consider robust non-linear precoding for the downlink of a multiuser multiple-input single-output (MISO) communication system in the presence of imperfect channel state information (CSI). The base station (BS) is equipped with multiple transmit antennas and each user terminal is equipped with a single receive antenna. We propose two robust Tomlinson-Harashima precoder (THP) designs. The first design is based on the minimization of the total BS transmit power under constraints on the mean square error (MSE) at the individual user receivers. We show that this problem can be solved by an iterative procedure, where each iteration involves the solution of a pair of convex optimization problems that can be solved efficiently. A robust linear precoder with MSE constraints can be obtained as a special case of this robust THP. The second design is based on the minimization of a stochastic function of the sum MSE under a constraint on the total BS transmit power. We formulate this design problem as an optimization problem that can be solved by the method of alternating optimization, the application of which results in a second-order cone program that can be numerically solved efficiently. Simulation results illustrate the improvement in performance of the proposed precoders compared to other robust linear and non-linear precoders in the literature.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!