
In this paper we conduct a detailed numerical analysis of the Gauss-type Nested Implicit Runge-Kutta formulas of order 4, introduced by Kulikov and Shindin in [4]. These methods possess many important practical properties such as high order, good stability, symmetry and so on. They are also conjugate to a symplectic method of order 6 at least. All of these make them efficient for solving many nonstiff and stiff ordinary differential equations (including Hamiltonian and reversible systems). On the other hand, Nested Implicit Runge-Kutta formulas have only explicit internal stages, in the sense that they are easily reduced to a single equation of the same dimension as the source problem. This means that such Runge-Kutta schemes admit a cheap implementation in practice. Here, we check the above-mentioned properties numerically. Different strategies of error estimation are also examined with the purpose of finding an effective one.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
