
We propose an exact algorithm for solving biobjective integer programming problems, which arise in various applications of operations research. The algorithm is based on solving Pascoletti-Serafini scalarizations to search specified regions (boxes) in the objective space and returns the set of nondominated points. We implement the algorithm with different strategies, where the choices of the scalarization model parameters and splitting rule differ. We then derive bounds on the number of scalarization models solved; and demonstrate the performances of the variants through computational experiments both as exact algorithms and as solution approaches under time restriction. The experiments demonstrate that different strategies have advantages in different aspects: while some are quicker in finding the whole set of nondominated solutions, others return good-quality solutions in terms of representativeness when run under time restriction. We also compare the proposed approach with existing algorithms. The results of our experiments show the satisfactory behaviour of our algorithm, especially when run under time limit, as it achieves better coverage of the whole frontier with a smaller number of solutions compared to the existing algorithms.
Biobjective integer programming, Optimization and Control (math.OC), Sensitivity, stability, parametric optimization, FOS: Mathematics, Pascoletti-Serafini scalarization, algorithms, biobjective integer programming, Mathematics - Optimization and Control, Algorithms, Multi-objective and goal programming
Biobjective integer programming, Optimization and Control (math.OC), Sensitivity, stability, parametric optimization, FOS: Mathematics, Pascoletti-Serafini scalarization, algorithms, biobjective integer programming, Mathematics - Optimization and Control, Algorithms, Multi-objective and goal programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
