Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository @...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Phenome Journal
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant Phenome Journal
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Zero‐shot insect detection via weak language supervision

Authors: Benjamin Feuer; Ameya Joshi; Minsu Cho; Shivani Chiranjeevi; Zi Kang Deng; Aditya Balu; Asheesh K. Singh; +5 Authors

Zero‐shot insect detection via weak language supervision

Abstract

AbstractCheap and ubiquitous sensing has made collecting large agricultural datasets relatively straightforward. These large datasets (for instance, citizen science data curation platforms like iNaturalist) can pave the way for developing powerful artificial intelligence (AI) models for detection and counting. However, traditional supervised learning methods require labeled data, and manual annotation of these raw datasets with useful labels (such as bounding boxes or segmentation masks) can be extremely laborious, expensive, and error‐prone. In this paper, we demonstrate the power of zero‐shot computer vision methods—a new family of approaches that require (almost) no manual supervision—for plant phenomics applications. Focusing on insect detection as the primary use case, we show that our models enable highly accurate detection of insects in a variety of challenging imaging environments. Our technical contributions are two‐fold: (a) We curate the Insecta rank class of iNaturalist to form a new benchmark dataset of approximately 6 million images consisting of 2526 agriculturally and ecologically important species, including pests and beneficial insects. (b) Using a vision‐language object detection method coupled with weak language supervision, we are able to automatically annotate images in this dataset with bounding box information localizing the insect within each image. Our method succeeds in detecting diverse insect species present in a wide variety of backgrounds, producing high‐quality bounding boxes in a zero‐shot manner with no additional training cost. This open dataset can serve as a use‐inspired benchmark for the AI community. We demonstrate that our method can also be used for other applications in plant phenomics, such as fruit detection in images of strawberry and apple trees. Overall, our framework highlights the promise of zero‐shot approaches to make high‐throughput plant phenotyping more affordable.

Related Organizations
Keywords

DegreeDisciplines::Engineering::Mechanical Engineering::Computer-Aided Engineering and Design, DegreeDisciplines::Life Sciences::Entomology, Plant culture, DegreeDisciplines::Life Sciences::Plant Sciences, 004, SB1-1110

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold