Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FCDNet: A Lightweight Network for Real-Time Wildfire Core Detection in Drone Thermal Imaging

Authors: Linfeng Wang; Oualid Doukhi; Deok Jin Lee;

FCDNet: A Lightweight Network for Real-Time Wildfire Core Detection in Drone Thermal Imaging

Abstract

The increasing number of wildfires damage nature and human life, making the early detection of wildfires in complex outdoor environments critical. With the advancement of drones and remote sensing technology, infrared cameras have become essential for wildfire detection. However, as the demand for higher accuracy in detection algorithms grows, the detection model’s size and computational costs increase, making it challenging to deploy high-precision detection algorithms on edge computing devices onboard drones for real-time fire detection. This paper introduces a novel infrared wildfire detection network named FCDNet to tackle this issue. It includes an Efficient Processing (EP) module based on the novel Partial Depthwise Convolution (PDWConv) and the lightweight feature-sharing decoupled detection head (Fast Head), achieving low-size and low-computation wildfire detection. An Adaptive Sample Attention (ASA) Loss is introduced to enhance the detection accuracy of wildfire cores in combination with Normalized Wasserstein Distance (NWD) Loss. The experiment shows that the model size of FCDNet is only 4.0MB, representing 63.5% of the baseline YOLOv8n network, with 63.3% of its parameters. It operates at just 5 Giga Floating Point Operations Per Second (GFLOPs), 38.3% lower, and achieves a 77.5% mAP (@50-95 IOU), a 1% increase, with a $460\times 460$ input image size. Compared to the state-of-the-art YOLOv11n, FCDNet reduces parameters, computation, and model size by 26.9%, 20.6%, and 27.3%, respectively. The thermal dataset and training codes used in this study are made publicly available at: https://github.com/WangLF1996/FCDNet-Dataset-and-Algorithm

Related Organizations
Keywords

infrared wildfire detection, lightweight network, YOLOv8n-based, FCDNet, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold