
arXiv: 2410.20103
Autoencoder permits the end-to-end optimization and design of wireless communication systems to be more beneficial than traditional signal processing. However, this emerging learning-based framework has weaknesses, especially sensitivity to physical attacks. This paper explores adversarial attacks against a double reconfigurable intelligent surface (RIS)-assisted multiple-input and multiple-output (MIMO)-based autoencoder, where an adversary employs encoded and decoded datasets to create adversarial perturbation and fool the system. Because of the complex and dynamic data structures, adversarial attacks are not unique, each having its own benefits. We, therefore, propose three algorithms generating adversarial examples and perturbations to attack the RIS-MIMO-based autoencoder, exploiting the gradient descent and allowing for flexibility via varying the input dimensions. Numerical results show that the proposed adversarial attack-based algorithm significantly degrades the system performance regarding the symbol error rate compared to the jamming attacks.
5 pages, 2 figures. Accepted by WCL
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
