Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Symbolic Logic
Article . 2025 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

QUASI–INVARIANT MEASURES CONCENTRATING ON COUNTABLE STRUCTURES

Authors: CLINTON CONLEY; COLIN JAHEL; ARISTOTELIS PANAGIOTOPOULOS;

QUASI–INVARIANT MEASURES CONCENTRATING ON COUNTABLE STRUCTURES

Abstract

Countable $\mathcal{L}$-structures $\mathcal{N}$ whose isomorphism class supports a permutation invariant probability measure in the logic action have been characterized by Ackerman-Freer-Patel to be precisely those $\mathcal{N}$ which have no algebraicity. Here we characterize those countable $\mathcal{L}$-structure $\mathcal{N}$ whose isomorphism class supports a quasi-invariant probability measure. These turn out to be precisely those $\mathcal{N}$ which are not "highly algebraic" -- we say that $\mathcal{N}$ is highly algebraic if outside of every finite $F$ there is some $b$ and a tuple $\bar{a}$ disjoint from $b$ so that $b$ has a finite orbit under the pointwise stabilizer of $\bar{a}$ in $\mathrm{Aut}(\mathcal{N})$. As a bi-product of our proof we show that whenever the isomorphism class of $\mathcal{N}$ admits a quasi-invariant measure, then it admits one with continuous Radon--Nikodym cocycles.

Related Organizations
Keywords

FOS: Mathematics, Mathematics - Logic, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Logic (math.LO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green