
arXiv: 2408.07454
Countable $\mathcal{L}$-structures $\mathcal{N}$ whose isomorphism class supports a permutation invariant probability measure in the logic action have been characterized by Ackerman-Freer-Patel to be precisely those $\mathcal{N}$ which have no algebraicity. Here we characterize those countable $\mathcal{L}$-structure $\mathcal{N}$ whose isomorphism class supports a quasi-invariant probability measure. These turn out to be precisely those $\mathcal{N}$ which are not "highly algebraic" -- we say that $\mathcal{N}$ is highly algebraic if outside of every finite $F$ there is some $b$ and a tuple $\bar{a}$ disjoint from $b$ so that $b$ has a finite orbit under the pointwise stabilizer of $\bar{a}$ in $\mathrm{Aut}(\mathcal{N})$. As a bi-product of our proof we show that whenever the isomorphism class of $\mathcal{N}$ admits a quasi-invariant measure, then it admits one with continuous Radon--Nikodym cocycles.
FOS: Mathematics, Mathematics - Logic, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Logic (math.LO)
FOS: Mathematics, Mathematics - Logic, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, Logic (math.LO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
