Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximation Algorithms for Clustering with Minimum Sum of Radii, Diameters, and Squared Radii

Authors: Friggstad, Zachary; Jamshidian, Mahya;

Approximation Algorithms for Clustering with Minimum Sum of Radii, Diameters, and Squared Radii

Abstract

In this paper, we present an improved approximation algorithm for three related problems. In the Minimum Sum of Radii clustering problem (MSR), we aim to select $k$ balls in a metric space to cover all points while minimizing the sum of the radii. In the Minimum Sum of Diameters clustering problem (MSD), we are to pick $k$ clusters to cover all the points such that sum of diameters of all the clusters is minimized. At last, in the Minimum Sum of Squared Radii problem (MSSR), the goal is to choose $k$ balls, similar to MSR. However in MSSR, the goal is to minimize the sum of squares of radii of the balls. We present a 3.389-approximation for MSR and a 6.546-approximation for MSD, improving over respective 3.504 and 7.008 developed by Charikar and Panigrahy (2001). In particular, our guarantee for MSD is better than twice our guarantee for MSR. In the case of MSSR, the best known approximation guarantee is $4\cdot(540)^{2}$ based on the work of Bhowmick, Inamdar, and Varadarajan in their general analysis of the $t$-Metric Multicover Problem. At last with our analysis, we get a 11.078-approximation algorithm for Minimum Sum of Squared Radii.

In proceedings of ESA 2022

Keywords

FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green