Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anionic carbonate activation of layered (α+β) nickel hydroxide

Authors: Vadym Kovalenko; Valerii Kotok;

Anionic carbonate activation of layered (α+β) nickel hydroxide

Abstract

Nickel hydroxide is widely used as the active material in supercapacitors. Samples of Ni(OH) 2 with the (α+β) layered structure, synthesized in the slit-diaphragm electrolyzer, are the most active. The possibility of carbonate activation of layered (α+β) Ni(OH) 2 was studied by the synthesis of samples in the slit-diaphragm electrolyzer using a mixture of sodium hydroxide and sodium carbonate as the electrolyte. The molar part of sodium carbonate in the NaOH+Na 2 CO 3 mixture was controlled by acid titration in the presence of two indicators. The synthesis of nickel hydroxide samples was conducted at the molar part of carbonate from 0.16 (NaOH without the additional introduction of carbonate) to 0.83. The crystal structure of the samples was studied by means of X-ray diffraction analysis, electrochemical characteristic – by means of cyclic voltammetry and galvanostatic charge-discharge cycling in the accumulator regime. By means of XRD analysis, it was found that upon increasing the molar part of carbonate in the anolyte to 0.49, the crystallinity of the monophase layered (α+β) structure increases. It was found that a further increase of the carbonate part results in a more amorphous structure due to a partial breakdown of the hydroxide lattice with the formation of basic salts and formation of the bi-phase system. This conclusion is supported by cyclic voltammetry and discharge curves. The study of the electrochemical characteristics revealed, that for the molar part of carbonate below 0.39, carbonate activation of hydroxide occurs resulting in an improved specific capacity. Increasing the carbonate part to 0.49 results in a lower specific capacity, and even further increase results in the breakdown of hydroxide into basic salts and a significant drop in electrochemical activity. Thus, it was found, that to achieve the maximum activating effect, the optimal molar part of sodium carbonate (in a mixture with sodium hydroxide) should be about 40 %. The specific capacity of nickel hydroxide under this optimal condition is 234 mA·h/g, and this sample is found to be susceptible to activation with cobalt compounds, which further improved capacity to 254 mA·h/g.

Keywords

carbonate; activation; nickel hydroxide; layered (α+β) structure; alkaline accumulator; slit-diaphragm electrolyzer., карбонат; активація; гідроксид нікелю; шарова (α+β) структура; лужний акумулятор; щілинний діафрагмовий електролізер, карбонат; активация; гидроксид никеля; слоевая (α+β) структура; щелочной аккумулятор; щелевой диафрагменный электролизер, UDC 54.057:544.653:621.13:661.13

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 3
  • 3
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Average
Average
Top 10%
3
3
Green
gold