Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum Approximate Counting for Markov Chains and Application to Collision Counting

Authors: Gall, François Le; Ng, Iu-Iong;

Quantum Approximate Counting for Markov Chains and Application to Collision Counting

Abstract

In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, Høyer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful "quantum walk based search" framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $ε$ by making $\tilde{O}\left(\frac{1}{ε^{25/24}}\big(\frac{N}{\sqrt{m}}\big)^{2/3}\right)$ queries, which gives an improvement over the $Θ\big(\frac{1}ε\frac{N}{\sqrt{m}}\big)$-query classical algorithm based on random sampling when $m\ll N$.

15 pages; corrected Lemma 4.1

Related Organizations
Keywords

FOS: Computer and information sciences, Quantum Physics, Computer Science - Data Structures and Algorithms, FOS: Physical sciences, Data Structures and Algorithms (cs.DS), Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green