
Boolean Networks (BNs) are widely used as a modeling formalism in several domains, notably systems biology and computer science. A fundamental problem in BN analysis is the enumeration of trap spaces, which are hypercubes in the state space that cannot be escaped once entered. Several methods have been proposed for enumerating trap spaces, however they often suffer from scalability and efficiency issues, particularly for large and complex models. To our knowledge, the most efficient and recent methods for the trap space enumeration all rely on Answer Set Programming (ASP), which has been widely applied to the analysis of BNs. Motivated by these considerations, our work proposes a new method for enumerating trap spaces in BNs using ASP. We evaluate the method on a mix of 250+ real-world and 400+ randomly generated BNs, showing that it enables analysis of models beyond the capabilities of existing tools (namely pyboolnet, mpbn, trappist, and trapmvn).
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-SY] Computer Science [cs]/Systems and Control [cs.SY], Trap Space; Boolean Network; Answer Set Programming, [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-SY] Computer Science [cs]/Systems and Control [cs.SY], Trap Space; Boolean Network; Answer Set Programming, [INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
