Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comprehensive experimental study of NBνN barrier structures based on n-HgCdTe MBE for detection in MWIR and LWIR spectra

Authors: Alexander V Voitsekhovskii; Stanislav M Dzyadukh; Dmitry I Gorn; Sergey A Dvoretsky; Nikolay N Mikhailov; Georgiy Yu Sidorov; Maxim V Yakushev;

Comprehensive experimental study of NBνN barrier structures based on n-HgCdTe MBE for detection in MWIR and LWIR spectra

Abstract

Abstract This work is devoted to a comprehensive experimental study of the electrical and photoelectric characteristics of barrier photosensitive structures in the NBνN configuration based on n-HgCdTe (MCT). Seven different types of photosensitive structures for middle wavelength (MWIR) and long wavelength (LWIR) infrared (IR) radiation ranges grown by molecular beam epitaxy (MBE) have been studied by complex conductivity spectroscopy method. The current-voltage characteristics (CVC) were measured both in the dark and in the presence of illumination. Based on the measured dependences of the dark current density on temperature and the ratio of the perimeter to the area of the structure, the dominant contribution of the bulk current component compared to the surface component for the MWIR structure (x ∼ 0.30) was established. This fact was confirmed by the value of the activation energy (from the Arrhenius plots) corresponding to the band gap. The results of frequency measurements of the differential conductivity of MIS structures based on NBνN also give a close activation energy, which corresponds to the diffusion limitation. LWIR structures (x ∼ 0.20) are characterized by an increase in the contribution of the surface leakage current in the total dark current. In this case, the activation energy determined from MIS measurements exceeds the band gap of the ν-layer, which is associated with the presence of an energy barrier for holes in the valence band. It is shown that if the problem of passivation of mesa structures is solved, it is possible to fabricate efficient MWIR and LWIR nBn, NBνN detectors based on MBE HgCdTe with high threshold parameters.

Keywords

nBn-структуры, длинноволновое инфракрасное излучение, барьерные структуры, инфракрасные детекторы, молекулярно-лучевая эпитаксия, МДП-структуры, вольт-амперная характеристика

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green