Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE/ACM Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inferring Gene Regulatory Networks via Ensemble Path Consistency Algorithm Based on Conditional Mutual Information

Authors: Jie Xu; Guanxue Yang; Guohai Liu; Hui Liu;

Inferring Gene Regulatory Networks via Ensemble Path Consistency Algorithm Based on Conditional Mutual Information

Abstract

Utilizing gene expression data to infer gene regulatory networks has received great attention because gene regulation networks can reveal complex life phenomena by studying the interaction mechanism among nodes. However, the reconstruction of large-scale gene regulatory networks is often not ideal due to the curse of dimensionality and the impact of external noise. In order to solve this problem, we introduce a novel algorithms called ensemble path consistency algorithm based on conditional mutual information (EPCACMI), whose threshold of mutual information is dynamically self-adjusted. We first use principal component analysis to decompose a large-scale network into several subnetworks. Then, according to the absolute value of coefficient of each principal component, we could remove a large number of unrelated nodes in every subnetwork and infer the relationships among these selected nodes. Finally, all inferred subnetworks are integrated to form the structure of the complete network. Rather than inferring the whole network directly, the influence of a mass of redundant noise could be weakened. Compared with other related algorithms like MRNET, ARACNE, PCAPMI and PCACMI, the results show that EPCACMI is more effective and more robust when inferring gene regulatory networks with more nodes.

Related Organizations
Keywords

Principal Component Analysis, Computational Biology, Gene Regulatory Networks, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!