
pmid: 36346850
Utilizing gene expression data to infer gene regulatory networks has received great attention because gene regulation networks can reveal complex life phenomena by studying the interaction mechanism among nodes. However, the reconstruction of large-scale gene regulatory networks is often not ideal due to the curse of dimensionality and the impact of external noise. In order to solve this problem, we introduce a novel algorithms called ensemble path consistency algorithm based on conditional mutual information (EPCACMI), whose threshold of mutual information is dynamically self-adjusted. We first use principal component analysis to decompose a large-scale network into several subnetworks. Then, according to the absolute value of coefficient of each principal component, we could remove a large number of unrelated nodes in every subnetwork and infer the relationships among these selected nodes. Finally, all inferred subnetworks are integrated to form the structure of the complete network. Rather than inferring the whole network directly, the influence of a mass of redundant noise could be weakened. Compared with other related algorithms like MRNET, ARACNE, PCAPMI and PCACMI, the results show that EPCACMI is more effective and more robust when inferring gene regulatory networks with more nodes.
Principal Component Analysis, Computational Biology, Gene Regulatory Networks, Algorithms
Principal Component Analysis, Computational Biology, Gene Regulatory Networks, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
